読者です 読者をやめる 読者になる 読者になる

ゼミの風景

おそらくお気楽はしのすけゼミの諸風景

Top | ゼミ2016卒 | ゼミ2015卒 | ゼミ2014卒 | イベント | About

LaTeX会という名のPzz P!

ゼミ2017年度卒

2週前のゼミもLaTeX会だったが,途中だったので2回目.
でも,なぜかPizza Partyになったよ.
f:id:okiraku894:20170302130524j:plain
f:id:okiraku894:20170302130515j:plain
f:id:okiraku894:20170302130647j:plain
しかし,この日に設定した要因となった張本人の前十字君が病院検査のため来られず.
もちろん,前十字靭帯の検査ということだ.

さて,肝心のLaTeX,やはりGhostScript経由でEPS画像を入れる方法は
そろそろ諦めたほうが良いらしい.
dvipdfmxにバージョンを変えるとpdf画像に対しての読み込みが可能で,
かつオプションを

pLatex command:

  • src-specials -interaction=nonstopmode -shell-escape "%s.tex"

とつければ.xbbファイルを自動作成してくれて,
pdfバージョンが合わないと文句を言われたら,オプション

dvipdfmx command:

  • V 5 "%s.dvi"

といったオマジナイをつけると動いてくれる.
これでまたしばらくは安定したLaTeX環境が提供できるかな.
いっそのことTeXLive2016という選択肢も考えたが,
彼らの小さなパソコンにインストールするというのは酷な話だから止めた.

今回は定理環境を紹介するとともに,そもそもの定義→命題→証明の流れについて
当ゼミにおいて特に注意してほしいことをコンコンと説いた.
具体的に中学生がいかにも書きそうなダメなサンプルから見せた.
f:id:okiraku894:20170307170502p:plain
そしてこれをかなり神経質に書いたのが↓
f:id:okiraku894:20170307170503p:plain

あらためて両者比較しよう.
f:id:okiraku894:20170307170504p:plain

さて,長年「教室」で培われた彼らの「クセ」,
卒論を書く段になったとき,どれくらい変わっていてくれるだろうか?
tokidoki.hatenablog.jp
tokidoki.hatenablog.jp

数理マジック(3年ゼミ)

ゼミ2017年度卒

f:id:okiraku894:20170209143743j:plain
f:id:okiraku894:20170209151114j:plain
f:id:okiraku894:20170209154617j:plain
一人目,数理マジック.というか気付いたら一人だけで終わった.
始め,簡単な目眩ましマジックを紹介し,それについては自分で解説を付けていた.
二つ目は27枚によるいわゆるジェルゴンヌのトリック.
こちらについては,昨年一般的な状況で離散力学系の問題として解いたのだった.
DSpace at 愛知教育大学: Generalized Gergonne's Trick and its Continuous Approximation
こちら方面で卒論を展開していくってのもあるかもしれないが.
Scratchでできるシミュレーションを見せたのだった.

そのついでに,三色カードのマジックも見せたのだが,
そのタネを見つける時間に費やされた.なかなか不思議に見えるらしい.
そのScratchシミュレーションもかつて作ったのだった.

卒論発表練習会 with 3年ゼミ(4年ゼミ)

ゼミ2016年度卒

卒論発表練習を3年を前に行う.
初めて聞く人たちにどう伝わるのかを見るためで,
これは4代目の頃から行っている行事,今年が11代目だ.
素朴な忌憚なき感想が何より重要で,
すっかり伝わるつもりでいることが全く伝わっていなかったりする.
何よりも教員養成大学,伝えることに神経を使わなくてはね.

↓あれ,こんな日めくりカレンダー作ってるけど,暇なのかな?
f:id:okiraku894:20170131114252j:plain

数理音楽,カード手品(3年ゼミ)

ゼミ2017年度卒

f:id:okiraku894:20170126141125j:plain
f:id:okiraku894:20170126142619j:plain
f:id:okiraku894:20170126144742j:plain
f:id:okiraku894:20170126153357j:plain
一人目,数理音楽.
今日は何の話になるのかとちょっと聞いてたら,7代目の卒論から.
ドレミファそーする?―音律の数理と音階の構成―
不協和度曲線から始まって,連分数展開による音階構成の仕組みまで触れた卒論.
実はとあるページでもこの卒論は紹介されているのをしばらく前に発見した.
sites.google.com
まぁ,元になった藤沢+クックの論文
和音性の計算法と曲線の絵描き方 ―不協和度・緊張度・モダリティ―
の真似事から始まって,
不飽和度曲線で起こっている解析的な現象をちょっと数学的にきちんと書いてみた,
というものだった.
ただ,不協和度曲線の協和点でグラフが尖ってるといった特長があればいいものを,
そうもなっていなかったために,何らかの方法で協和点を解析的に特徴付けねば,
とでっち上げたのが第二不協和度曲線だった.

で,本日はその第二不協和度曲線の定義まで行った.
次はどこにいくのだろう.

で,実は二人目,数理手品もあったのだけど,
カードで実演してその場で皆で解決してしまったので,
板書も何もなくて写真もない.

トランプ数理マジック事典

トランプ数理マジック事典

天体力学(3年ゼミ)

ゼミ2017年度卒

f:id:okiraku894:20170119135658j:plain
f:id:okiraku894:20170119145429j:plain
f:id:okiraku894:20170119152952j:plain
f:id:okiraku894:20170119160420j:plain
一人目,天体力学.っていうか,一人目で終わった.
二体問題をはじめた.今回は二体の万有引力による運動方程式から運動が平面上になること,
保存力にまつわる式変形から楕円軌道が復元されることなどなど.
とにかく計算計算,また計算...

天体と軌道の力学

天体と軌道の力学

待ち行列理論,マッチング理論(3年ゼミ)

ゼミ2017年度卒

f:id:okiraku894:20170112143902j:plain
f:id:okiraku894:20170112150253j:plain
一人目,待ち行列理論.連続時間マルコフ連鎖について.
離散モデルから微分方程式を導き,
更に定常状態における振る舞いを導くところまで.
入り口で推移確率行列と推移率行列の違いに気付かず戸惑ったものの,
最後は定常状態での各状態の確率までたどり着いた.

例題でわかる待ち行列理論入門

例題でわかる待ち行列理論入門

f:id:okiraku894:20170112154643j:plain
f:id:okiraku894:20170112163035j:plain
二人目,マッチング理論.
臓器マッチングなど現実的な話題に対する,
効率的かつパレート最適な解についての性質の議論.
ゼミでは具体的な場合によって証明の方針を確認.
その先,一般的にはどう証明するか,で次回に持ち越し.
あ,Birkhoff-von Neumannの定理についても.

マーケットデザイン入門―オークションとマッチングの経済学

マーケットデザイン入門―オークションとマッチングの経済学

数理音楽,数理手品,トポロジカルインデックス(3年ゼミ)

ゼミ2017年度卒

f:id:okiraku894:20170105142134j:plain
新春一人目,数理音楽.
とはいっても卒論手直しで気を取られていたら写真を撮り忘れていた.
まだ音律の話.そろそろ本題にいこうや.

f:id:okiraku894:20170105150354j:plain
二人目,数理手品.
迷路をやろうとして面白そうでないからと数理手品に.
今日は偶奇性によるすぐに分かるマジックを披露.
けれどこの現象をきちんと数理の言葉で記述できるか(奇術だけに)は別問題.
また面白そうでないから,なんて言いだしそうだけど,とりあえず様子を見よう.

トランプ数理マジック事典

トランプ数理マジック事典

f:id:okiraku894:20170105163153j:plain
三人目,トポロジカルインデックス.
こちらは順調に面白い話に進みつつある.
今日は性質の良い帰納的に定義できるグラフについて.
何故かとなりあわない辺の選び方の数を数え上げると
何やら良い性質が出てくるんだ.
これは何を数えているのかなぁ...

トポロジカル・インデックス: フィボナッチ数からピタゴラスの三角形までをつなぐ新しい数学

トポロジカル・インデックス: フィボナッチ数からピタゴラスの三角形までをつなぐ新しい数学

年末だし,ケーキだし(3年ゼミ)

ゼミ2017年度卒 イベント

えっと,まぁ,そうなるよね↓
f:id:okiraku894:20161222140536j:plain:w500,left
f:id:okiraku894:20161222140650j:plain:w500,right


前日からのゼミ生によるLINEによる「X'mas Partyやろう!」攻撃により,
4年に続きこちらもイベントに変更.いや,4年はこちらが企画したんだった.
作戦に成功してニンマリな人たち↓
f:id:okiraku894:20161222141538j:plain:w500,left
f:id:okiraku894:20161222141600j:plain:w500,right
f:id:okiraku894:20161222141739j:plain:w500,left
f:id:okiraku894:20161222142638j:plain:w500,right


さて,1年後,こんな風に優雅に過ごしていられたら
なんて素晴らしいことだろうか(反語表現).

おっと,今回利用したのは3代目ゼミ生によって開拓された
近くのケーキ屋ラ・レネット.
豊明市西川町にあるパティスリー ラ・レネット|La Reinette

卒論大詰め,しかしPzzP!(4年ゼミ)

ゼミ2016年度卒 イベント

19日から21日の3日は授業日程の都合で全時間をゼミに充てられることに.
ってなわけで,もちろんPizza Party!
f:id:okiraku894:20161220131851j:plain:w500,left


↓ジャンケンでジュース代誰持ちか決めてからの,
f:id:okiraku894:20161220131934j:plain:w500,right
f:id:okiraku894:20161220131941j:plain:w500,left


↓卒論ダメ~,のポーズ.
f:id:okiraku894:20161220132050j:plain:w500,right


↓そして,普段なら多分4枚じゃ足りないと思う.
f:id:okiraku894:20161220132133j:plain:w500,left
f:id:okiraku894:20161220132225j:plain:w500,right


さて,本題の卒論,大詰め,と行きたいところだが,さてさて.
各自しばしば路頭に迷いながらも,何とか行き着く先を求めて歩いている.

現実問題における"解答"は,
誰かから与えられるようなシロモノなんかでは断じて無い.
君が何を"解答"とするのか,それが常に問われ続けられるのだ.
アルフレッド・アドラーの言葉を借りればそれは

  人間は自分の人生の主人公である

ということだ.
呑みこまれるな,他者の妄言に.何よりもまず,自分の目で確かめよ.


なお,数理音楽についてはようやく一つ大きめの結果が出せた.
一般化Diatonic set(つまりMyhill性を持った部分集合)同士の
転回を許した距離は2全音以下である,ということ.
一見すると図形的に明らかに見えるのだが,Diatonic set同士を重ねたとき,
一方の隣接2点間に他方の2点が入ってくることがないのだ,
ということを言っているわけで,証明が必要なことではあるからだ.

こうして大詰めになって新しい結果が出る瞬間が卒論指導の醍醐味なんだな.
f:id:okiraku894:20161219133405j:plain
f:id:okiraku894:20161219165455j:plain
f:id:okiraku894:20161220150516j:plain
f:id:okiraku894:20161220152938j:plain

スキーの力学,数理音楽,その他諸々(4年ゼミ)

ゼミ2016年度卒

f:id:okiraku894:20161217102556j:plain
f:id:okiraku894:20161217102555j:plain
f:id:okiraku894:20161217102557j:plain
一人目,スキーの力学.もう大詰めなんだけど,
横滑りターンのモデルまでできたらな,ってことでちょっとトライ.
どうしても微分方程式の数が足らず,どうしようか.
でもカービングターンは確立したので,これの数値解析に専念しても良い.
つまり上手い人がなぜ急斜面でも板をきちんと踏んでゆっくり滑れるのか,
といったことだ.で,BASICで作ってみた.
f:id:okiraku894:20161217114951p:plain

REM
REM [一本足スキーモデル]
REM ver. 2016/12/16
REM

LET tmax=3 !最大表示時間
LET wx=tmax !横軸最大
LET wy=PI !縦軸最大
SET WINDOW -wx*.05,wx,-wy*1,wy

LET m=50 !質量[kg]
LET R=10 !曲率半径[m]
LET a=PI/9 !斜度[rad]
LET g=9.8 !重力加速度[m/s^2]
LET h=0.6 !股関節位置[m]
LET HH=h*1.1 !重心の高さ[m]
LET mu=0.6 !摩擦係数

LET dt=.001 !時間の刻み幅

LET th0=PI/20 !初期θ
LET thv0=0 !初期dθ/dt
LET w0=PI/6 !初期w
LET wv0=-PI/6 !初期dw/dt
DO
   mouse poll mx,my,left,right
   IF left=1 THEN
      IF ABS(my-wy*0.9)<wy/20 AND wx>0 THEN LET th=mx/wx*PI/2
      IF ABS(my-wy*0.8)<wy/20 AND wx>0 THEN LET thv=mx/wx*PI/2
      IF ABS(my-wy*0.7)<wy/20 AND wx>0 THEN LET w=mx/wx*PI/2
      IF ABS(my-wy*0.6)<wy/20 AND wx>0 THEN LET wv=-mx/wx*PI/2
      IF ABS(my-wy*0.5)<wy/20 AND wx>0 THEN LET a=mx/wx*PI/2
       
   END if    
   LET th0=th
   LET thv0=thv    
   LET w0=w
   LET wv0=wv
    
   SET DRAW mode hidden
   CLEAR
   DRAW ruler
   DRAW axes(wx/10,wy/10)
   FOR t=0 TO tmax STEP dt
      WHEN EXCEPTION IN
         LET th1=th0+thv0*dt
         LET w1=w0+wv0*dt
         LET tha=(-g*SIN(a)*SIN(w0)/h-g*COS(a)*th0/HH+th0*thv0^2+(R/h+th0)*wv0^2)
         LET thv1=thv0+tha*dt
         LET wa=-(g*SIN(a)*COS(w0)+2*h*thv0*wv0)/(R+h*th0)
         LET wv1=wv0+wa*dt
         LET FF=-h*tha+h*th0*thv^2+(R+h*th0)*wv0^2-g*SIN(a)*SIN(w0) !摩擦抗力
         SET LINE COLOR 3!緑--静止摩擦を超えたとき
         IF FF>mu*g*COS(a) THEN
            PLOT LINES:t,-wy; t,wy
            LET t=tmax
         END if
         SET LINE COLOR 2!青--wのグラフ
         PLOT LINES: t,w0;t+dt,w1
         SET LINE COLOR 4!赤--θのグラフ
         PLOT LINES: t,th0;t+dt,th1
         LET th0=th1
         LET thv0=thv1
         LET w0=w1
         LET wv0=wv1
      USE
         LET t=tmax
      END WHEN
   NEXT t
   SET DRAW mode explicit
LOOP UNTIL left*right=1

PICTURE ruler
!エッジ角θ 
   LET p=0.9
   LET px=th*2*wx/PI
   SET LINE COLOR 4
   SET AREA COLOR 7
   GRAPH AREA:0,wy*p+wy/20;px,wy*p+wy/20;px,wy*p;0,wy*p
   GRAPH LINES:0,wy*p+wy/20;wx,wy*p+wy/20;wx,wy*p;0,wy*p
   PLOT TEXT ,AT -wx*.02,wy*p:"θ"
   PLOT TEXT ,AT px, wy*p, USING "##.#":th*180/PI
   !エッジ角速度dθ/dt
   LET p=0.8
   LET px=thv*2*wx/PI
   SET LINE COLOR 4
   SET AREA COLOR 6
   GRAPH AREA:0,wy*p+wy/20;px,wy*p+wy/20;px,wy*p;0,wy*p
   GRAPH LINES:0,wy*p+wy/20;wx,wy*p+wy/20;wx,wy*p;0,wy*p
   PLOT TEXT ,AT -wx*.02,wy*p:"θv"
   PLOT TEXT ,AT px, wy*p, USING "##.#":thv*180/PI
   !角度ω
   LET p=0.7
   LET px=w*2*wx/PI
   SET LINE COLOR 2
   SET AREA COLOR 5
   GRAPH AREA:0,wy*p+wy/20;px,wy*p+wy/20;px,wy*p;0,wy*p
   GRAPH LINES:0,wy*p+wy/20;wx,wy*p+wy/20;wx,wy*p;0,wy*p
   PLOT TEXT ,AT -wx*.02,wy*p:"ω"
   PLOT TEXT ,AT px, wy*p, USING "##.#":w*180/PI
   !角速度dω/dt
   LET p=0.6
   LET px=-wv*2*wx/PI
   SET LINE COLOR 2
   SET AREA COLOR 3
   GRAPH AREA:0,wy*p+wy/20;px,wy*p+wy/20;px,wy*p;0,wy*p
   GRAPH LINES:0,wy*p+wy/20;wx,wy*p+wy/20;wx,wy*p;0,wy*p
   PLOT TEXT ,AT -wx*.02,wy*p:"ωv"
   PLOT TEXT ,AT px, wy*p, USING "###.#":wv*180/PI
   !傾斜角α
   LET p=0.5
   LET px=a*2*wx/PI
   SET LINE COLOR 9
   SET AREA COLOR 8
   GRAPH AREA:0,wy*p+wy/20;px,wy*p+wy/20;px,wy*p;0,wy*p
   GRAPH LINES:0,wy*p+wy/20;wx,wy*p+wy/20;wx,wy*p;0,wy*p
   PLOT TEXT ,AT -wx*.02,wy*p:"α"
   PLOT TEXT ,AT px, wy*p, USING "##.#":a*180/PI
    
END PICTURE
END

f:id:okiraku894:20161216150849j:plain
二人目,数理音楽.もうここからイレギュラーで話したい人が話すことに.
12音音階におけるダイアトニック7音中の三度堆積和音たちが互いに高々距離2であること,
これを一般的枠組みの中で示そうという試みを続けている.
近いところまで来た.しかしそれをきちんと数理で追いたいわけだ.さて.

待ち行列,マッチング理論,天体力学(3年ゼミ)

ゼミ2017年度卒

f:id:okiraku894:20161215140515j:plain
一人目,待ち行列.ようやく推移確率行列登場.
これで推進力があがった.

例題でわかる待ち行列理論入門

例題でわかる待ち行列理論入門

f:id:okiraku894:20161215150208j:plain
f:id:okiraku894:20161215152355j:plain
二人目,マッチング理論.
前回紹介したTTCアルゴリズムと等確率に優先順位を決めて割り当てる方法が
ある意味で同じことをしている,という話.
もっともその証明を行ったのではなく,具体例でやってみせたということ.
なかなか不思議.どうしてだろう.

マーケットデザイン入門―オークションとマッチングの経済学

マーケットデザイン入門―オークションとマッチングの経済学

f:id:okiraku894:20161215160437j:plain
f:id:okiraku894:20161215163550j:plain
三人目,天体力学.
距離の二乗に反比例する万有引力の存在は,空間が三次元であることの証拠である,という話を
ニュートンポテンシャルとポテンシャルが満たすべきラプラス方程式から導いた.
途中の計算はすっとばしたのだけどね.

天体と軌道の力学

天体と軌道の力学

数理音楽,出会いの数理(4年ゼミ)

ゼミ2016年度卒

f:id:okiraku894:20161212162158j:plain
一人目,数理音楽.こちらの話はそろそろ佳境.
「スムーズな和音進行」をJ表現による議論で一般的に示そうという試み.
今のところ成功していないようだが,見つけるのも時間の問題だろう.
それでも五度進行という音楽的には自然とされる進行については,
数理的な意味付けができないでいる.この先,何か見つけられるだろうか?
で,気付いたら3時間やってしまっていた.

f:id:okiraku894:20161212180007j:plain
二人目,出会いの数理.こちらはある程度形は出来上がったものの,
卒論直しが大変なことに.
f:id:okiraku894:20161211163515j:plain
というか,ようやく一人赤が入れられるようになった,というべきか.

タイミングの数理―最適停止問題 (シリーズ「現代人の数理」)

タイミングの数理―最適停止問題 (シリーズ「現代人の数理」)

スキーの力学,最適停止ゲーム,数独の数理,キューブパズル(4年ゼミ)

ゼミ2016年度卒

f:id:okiraku894:20161209112730j:plain
f:id:okiraku894:20161209123453j:plain
一人目,スキーの力学.一本足スキーモデルに固まってから
ようやく一つの連立微分方程式系まで辿り着く.
もっともこれを実際に数値計算に載せたとき使えるかどうかは全く未検証.
非線形なので上手く初期値を選ばないとおそらくは不安定かと思われる.
つまり,本当の山場はこれからなんだが,本人は気付いているだろうか.

f:id:okiraku894:20161209142605j:plain
二人目,最適停止ゲーム.もう一度ストーリーを見直し計算しなおしたら
沢山の誤りがあったそうで本日訂正版を見た.
そして当初の予定であったしかるべき不等式が維持できるのかについて
数値計算してみたらどうもそうではないという結果.
で,本人は沈没していたけれど,いやいやそうではなく,
場合分けがハッキリしたのだから,どのようにケースを使い分ければ良いのか,
が分かったわけで,つまりこうやって次の手の戦略が決定できる,
という意味で答えを得たのだよ,と気付いてもらった.
さて,あとは当人が具体的数値実験でどれだけのことをやれるか,だろう.

f:id:okiraku894:20161209170015j:plain
三人目,数独の数理.こちら,バーンサイドの補題にずっとかかりっきり.
つまり,四独の全パターンを変換群でもって分類しようということなのだ.
実際パターンが288であることは示されている一方,
変換群のサイズすら今のところ決められないでいる.2冪の群なのに.
しかし,実は2冪の有限群の分類は難しいらしく,
位数16で14個,位数32で51個,位数64で267個,位数128で2328個,
位数256で56,092個,位数512で10,494,213個なのだそうだ.
d.hatena.ne.jp
のみならず,「ほとんどすべての有限群は2-群である」なる
フォークロアがあるくらいだそうだ.
さてさて,この四独変換群,中身はいかに?

「数独」を数学する -世界中を魅了するパズルの奥深い世界-

「数独」を数学する -世界中を魅了するパズルの奥深い世界-

四人目,キューブパズル.こちらは卒論編集のみなので写真なし.
なんだろう,とりあえず大まかなストーリーはできあがってしまったとこだろうか.
そして何ら難しい道具は使わず,できることをした,という感じだ.
何か足りない.どう膨らませようかね.

群論の味わい ?置換群で解き明かすルービックキューブと15パズル?

群論の味わい ?置換群で解き明かすルービックキューブと15パズル?

迷路の数理,トポロジカルインデックス(3年ゼミ)

ゼミ2017年度卒

f:id:okiraku894:20161208142241j:plain
一人目,迷路の数理.迷路の作り方色々で何と3回目.
今日は穴掘り法とクラスター法.
かつて粘菌が迷路を解く数理モデルを卒論にしたとき,
10進BASICでもってクラスター法の迷路を作った.
人生 進んで迷って行き止まり―迷路の数理と粘菌モデル―
そしてその生成過程を動画にしたのだった.
tokidoki.hatenablog.jp
しかし,どうやら当人はこれ以上迷路はやらないらしい.
さて,何するのかな?

f:id:okiraku894:20161208150457j:plain
f:id:okiraku894:20161208153113j:plain
f:id:okiraku894:20161208160622j:plain
f:id:okiraku894:20161208163829j:plain
二人目,トポロジカルインデックス.
今回はいよいよ連分数展開の話題.特に頭を悩ませたのが連分多項式の扱い.
連分数の力学を行列表示してしまえば済む話なのだけど,
ここは当人に付き合って連分多項式の定義だけから関係式を出すことにした.
1年次の線形数学の話題なので,再び全員でアクティブラーニングモードへ.
と,わざわざ言わなくても,ゼミってそもそもこういうものだから.

トポロジカル・インデックス: フィボナッチ数からピタゴラスの三角形までをつなぐ新しい数学

トポロジカル・インデックス: フィボナッチ数からピタゴラスの三角形までをつなぐ新しい数学

数理音楽,出会いの数理(4年ゼミ)

ゼミ2016年度卒

f:id:okiraku894:20161205140638j:plain
f:id:okiraku894:20161205152512j:plain
一人目,数理音楽.
J関数にまつわる性質の証明を完成してきてもらったのと,当人による「発見」の説明.
その集合がMaximal EvenならJ関数表現される,という証明だったのだが,
別の具体例で見てみるとどうも違っていたらしい.
連分数展開に近い扱いをしたところまでは良かったのだが,
数を挟んでいく方法が,そうきれいには書けないということが分かった.
しかし,こういったことを自分で見つけられるのも計算経験があるからだ.

二人目,出会いの数理.
とはいっても,もう今日は卒論直しに集中.
本当は全体を大幅に書き換えたいのだが,そんな元気はこちらにない.

タイミングの数理―最適停止問題 (シリーズ「現代人の数理」)

タイミングの数理―最適停止問題 (シリーズ「現代人の数理」)