読者です 読者をやめる 読者になる 読者になる

ゼミの風景

おそらくお気楽はしのすけゼミの諸風景

Top | ゼミ2016卒 | ゼミ2015卒 | ゼミ2014卒 | イベント | About

マッチングの数理,数理マジック(4年ゼミ)

f:id:okiraku894:20170526112732j:plain
一人目,マッチングの数理.
先回,男性有利アルゴリズムが実際に有利であること等の証明が完了したが,
それは同時に女性不利なのか?については示していなかった.今回はその証明.
行われた証明を見ると実は一般のマッチングの優劣が
男性と女性で丁度裏返しになることも示されることが分かった.これで実習前は一区切り.

マーケットデザイン入門―オークションとマッチングの経済学

マーケットデザイン入門―オークションとマッチングの経済学

f:id:okiraku894:20170526155134j:plain
二人目,数理マジック.
Gergonne系トリックの離散力学化の続き.
連続近似と元の離散力学がずっと近いままであることを
今回当人が示してきた.一部不等号の成立が怪しいところがあってそこを訂正して完成.
ところでこれは不動点が整数となる時の話で,
そうでないときは連続の場合の不動点の周りで振動することになる.
それがいつなのか?という話になり,図で観察すると答えが見えるので,
今度はそれを証明してきてもらうことに.
また, \lfloor\frac{x}{2}\rfloor に絡んだ別のトランプマジックを見せて
その理由も考えてきてもらうことに.

さて,これで教採終了まで6人中5人のゼミは一度休止となる.
復帰後スムーズに事が進むと良いのだけどな.
というか,皆まずは受かってもらわないとね.

音声工学,天体力学(4年ゼミ)

f:id:okiraku894:20170525142403j:plain
f:id:okiraku894:20170525150413j:plain
一人目,音声工学.
先回引っ掛かった「偏自己相関係数」の書き換えについて再び.
偏自己相関係数の計算を漸化式によって求める方法を見ているところなのだそうだが,
期待値計算ですることを見失ってしまう.
一度落ち着いてきちんとした定義に遡って始めたほうが良さそうだ.
というところで来週から実習で忘れるね.

新音響・音声工学

新音響・音声工学

f:id:okiraku894:20170525153822j:plain
f:id:okiraku894:20170525160046j:plain
f:id:okiraku894:20170525161718j:plain
二人目,天体力学.
惑星環については進展がなく,逃げ場として三体問題の続きを話してもらう.
回転座標系から見るとコリオリ力と遠心力が現れ,
しかし遠心力項を移行するとポテンシャルに書き換わり,
結果保存力として見られるところまで.こちらも続きは教採後となるのだね.

天体と軌道の力学

天体と軌道の力学

トポロジカルインデックス,待ち行列(4年ゼミ)

f:id:okiraku894:20170522112608j:plain
f:id:okiraku894:20170522114309j:plain
f:id:okiraku894:20170522122550j:plain
一人目,トポロジカルインデックス.
前回は炭化水素の異性体全体に渡るトポロジカルインデックスを計算しかけたのだけど,
膨大すぎて話途中で終わり,今日は一転して残ったテキストの演習問題を解いた.
連分多項式に纏わるもので何れも帰納的な議論で片付く.

トポロジカル・インデックス: フィボナッチ数からピタゴラスの三角形までをつなぐ新しい数学

トポロジカル・インデックス: フィボナッチ数からピタゴラスの三角形までをつなぐ新しい数学

f:id:okiraku894:20170522135317j:plain
f:id:okiraku894:20170522142628j:plain
二人目,待ち行列.有限容量複数待ち行列についてその性能評価まで.
何れの議論もこれまでとほぼ平行に可能で目新しい点は無い.
それでも具体的な数値で見てみると意外と直感に合わなかったりして
実際にシミュレーションをし始めると面白いこともあるのかもしれない.

例題でわかる待ち行列理論入門

例題でわかる待ち行列理論入門

音声工学,天体力学(4年ゼミ)

f:id:okiraku894:20170518135754j:plain
f:id:okiraku894:20170518142156j:plain
f:id:okiraku894:20170518150134j:plain
一人目,音声工学.
というか前回当人が引っかかっていた最小二乗法の本当の最小?
の疑問に答える時間が半分ほど.
二乗和だし,連続関数だし,いや二次形式の多項式だからOKなんだけどね.
後半,音声工学では標準的に使われているらしい偏自己相関係数について.
ただし定義はしたものの色々と導出できずに終わった.次回へ.

新音響・音声工学

新音響・音声工学

f:id:okiraku894:20170518161406j:plain
二人目,Ring system の力学系.
前回はロッシュ限界を簡易的な潮汐力から導いた.
「では土星の環はロッシュ限界付近なの?」という疑問に答えるべく,
構成物が氷だとして具体的な数値データをあてはめると,
ロッシュ限界より1000kmほど外側にA環があるとのこと.
ただ,今のところその他のデータが見つけられないらしく,あまり話は進まず.
ゼミが終わってからNASA辺りをうろつくと色々なデータが落ちてたから,当人に送った.
次週,何かしてくるのかな?

天体と軌道の力学

天体と軌道の力学

トポロジカルインデックス,待ち行列(4年ゼミ)

f:id:okiraku894:20170515115231j:plain
f:id:okiraku894:20170515123549j:plain
一人目,トポロジカルインデックス.
いよいよ炭化水素のトポロジカルインデックスへ.
つまり次数が4以下の木グラフのトポロジカルインデックスを計算したいのだが,
ちょっとやってみるだけでも随分と大変だ.
なにより,枝からさらに枝が生えるので簡単な帰納法ではない.
もちろんアルゴリズム的には最長鎖を選んで端の枝を使うか使わないかで分解して
帰納的に積み上げていけば良いわけだが,
何かもっと上手い代数的操作がないものだろうか.

トポロジカル・インデックス: フィボナッチ数からピタゴラスの三角形までをつなぐ新しい数学

トポロジカル・インデックス: フィボナッチ数からピタゴラスの三角形までをつなぐ新しい数学

f:id:okiraku894:20170515134701j:plain
f:id:okiraku894:20170515145006j:plain
二人目,待ち行列.
複数窓口モデルの性能評価.途中,人数が一人増えただけで
えらく効率が上がる例を挙げたのだが,その原因がどのファクターによるものか,
目の子で調べようとしたら何だか原因がよく見えなくなった,あれれ?

例題でわかる待ち行列理論入門

例題でわかる待ち行列理論入門

マッチングの数理,数理マジック(4年ゼミ)

f:id:okiraku894:20170512120453j:plain
一人目,マッチングの数理.
男性有利アルゴリズムが本当に男性最適解なのか?の証明が続く.
2週経って改めて見直すと,個人合理性に照らせば問題が解決できると分かった.
ところで男性有利は女性不利なのか?についてはまだ何も.
おそらく証明で利用していない,安定マッチングにはブロックが存在しないこと,
を使うのだと思うけど,証明は再び2週間後へ.

マーケットデザイン入門―オークションとマッチングの経済学

マーケットデザイン入門―オークションとマッチングの経済学

f:id:okiraku894:20170512163036j:plain
二人目,数理マジック.
Gergonne系マジックの力学系解釈.二山バージョンでの観察から
すぐにp山バージョンへ書き換えられる.
そしてGergonne力学系の大域安定点の存在は一次関数の挙動に結びつければいい.
ただ,その安定点が整数点であれば,ということ.
そうでないとき新たな状況が生まれるのでその部分の考察をしてきてもらうことに.

音声工学,天体力学(4年ゼミ)

f:id:okiraku894:20170511141008j:plain
f:id:okiraku894:20170511145207j:plain
一人目,音声工学.線形予測理論を進める.
過去のデータの線形和として現在の値を最小2乗法で求めるということだが,
テキストでは途中,偏微分が0であることでのみ最小と結論づけていた.
で,本当にそれで良いのか,とこだわって観察をしてみる.
直感的には最大値ではなく最小値のみがありそうなんだが,
データが作る正方行列の固有値が本当に正なのかというところに話が向かい,
その正方行列が特殊な作られ方だからどうやら本当らしい,というところまで.
そこから先の証明は任せることにした.

新音響・音声工学

新音響・音声工学

f:id:okiraku894:20170511155142j:plain
二人目,惑星環の力学.
先回惑星環の成り立ちを力学的にきちんと追ってみよう,という流れとなり,
今回は小天体が引力で崩壊するロッシュ限界について見てきたようだ.
ただし,今回利用した潮汐力は前回までの制限三体問題としてでなく,
もっと素朴に主星からの距離に伴う引力の変化によって発生する
「見かけの力」のような扱いだった.これ,同じことしてるのかなぁ?
何にしても現実の天体についてあれこれ計算して理論とのずれをよく見てみたい.

天体と軌道の力学

天体と軌道の力学

トポロジカルインデックス,待ち行列(4年ゼミ)

f:id:okiraku894:20170508110759j:plain
f:id:okiraku894:20170508113348j:plain
f:id:okiraku894:20170508120211j:plain
一人目,トポロジカルインデックス.
数え上げ多項式に纏わる諸量の観察を櫛グラフまで行ってから,
いよいよ毛虫グラフ.ここまでくるとパラメータが増えすぎて大変,
と思いきや,何と連分数展開ときれいに結びついて
たくさんの事が一言で言えるようになってくる.面白くなってきた.

トポロジカル・インデックス: フィボナッチ数からピタゴラスの三角形までをつなぐ新しい数学

トポロジカル・インデックス: フィボナッチ数からピタゴラスの三角形までをつなぐ新しい数学

f:id:okiraku894:20170508135002j:plain
f:id:okiraku894:20170508143249j:plain
f:id:okiraku894:20170508144137j:plain
二人目,待ち行列.
有限容量の性能評価から始まって複数窓口モデルへ.
本日は人数分布を求めるところまで.
窓口が全部は埋まっていない中間状態ではやや複雑な形になるが,
窓口が全部埋まりだすと単数窓口モデルの定数倍と変わらなくなる.
そりゃそうだといえばそうなんだが.

例題でわかる待ち行列理論入門

例題でわかる待ち行列理論入門

トポロジカルインデックス,待ち行列(4年ゼミ)

f:id:okiraku894:20170501120026j:plain
f:id:okiraku894:20170501123037j:plain
一人目,先週手違いでできなかったグラフに纏わる数え上げの話.
前回チェビシェフが現れ,{\cos\theta}のn倍角表示に触れたところだった.
結局\cos n\thetaが同じ漸化式を満たすことから示されるし,
\sin n\thetaについては\cos n\thetaを微分すれば出てくる.
あとはチェビシェフ多項式の具体的表示が表記のものになることを見れば良い.

話は先へ進み,いよいよグラフの数え上げ多項式が登場.
ほう,木グラフの場合の数え上げ多項式には隣接行列の行列式表示があるわけなんだね.

トポロジカル・インデックス: フィボナッチ数からピタゴラスの三角形までをつなぐ新しい数学

トポロジカル・インデックス: フィボナッチ数からピタゴラスの三角形までをつなぐ新しい数学

f:id:okiraku894:20170501135442j:plain
f:id:okiraku894:20170501143218j:plain
f:id:okiraku894:20170501144740j:plain
二人目,待ち行列.今回から有限容量での待ち行列理論.
今まで無限大にして消していたところが消えずに残るところがその違い.
議論はほぼこれまでのまま平行に行えるようだった.

例題でわかる待ち行列理論入門

例題でわかる待ち行列理論入門

マッチングの数理(4年ゼミ)

f:id:okiraku894:20170428122243j:plain
f:id:okiraku894:20170428123817j:plain
一人目,マッチングの数理.
安定マッチングの基本的な命題,GSアルゴリズムによるマッチングが
安定マッチング中で最大男性有利であることの証明を試みた.
より有利な安定マッチングがあるとして男女の列を構成していく.
ベタにその場で考えて進めていったが,
途中でお一人様女性が現れた場合のみが証明できずに残った.
続きは2週間後.さてさて.

マーケットデザイン入門―オークションとマッチングの経済学

マーケットデザイン入門―オークションとマッチングの経済学

カードマジックの数理,音声工学,天体力学(4年ゼミ)

f:id:okiraku894:20170427115814j:plain
f:id:okiraku894:20170427121521j:plain
一人目,カードマジックの数理.
前回からちょっとずつGergonne系マジックの力学系解釈に誘っている.
なぜその手順だとその位置に落ち着くのか,そもそも必ず落ち着くのか?
という問題に縮小写像力学系の言葉で答えようというつもり.
そして離散化しない単なる直線の場合,
それが容易に示せることを当人自身で示してもらった.
では,ガウス記号がついている離散化した場合は果たして?
というところで2週間後へ.

トランプ数理マジック事典

トランプ数理マジック事典

f:id:okiraku894:20170427142844j:plain
f:id:okiraku894:20170427145045j:plain
二人目,音声工学.
先回丁度良いと思われるテキストを渡したので,
今週はモリモリやってきてるかと思ったら,あまり進まず.あれれ.
工学の話題だからどう数学として扱うかは確かに難しいのかもしれない.
けど,もっとクリエイティブに学んで欲しいわけで,
差し当たり線形予測理論について読んできてもらうことに.

新音響・音声工学

新音響・音声工学

f:id:okiraku894:20170427151418j:plain
f:id:okiraku894:20170427155544j:plain
f:id:okiraku894:20170427160701j:plain
三人目,天体力学.
惑星環の研究に方向性を定めた先週,今回はとりあえず種々の引力圏について見てきたようだ.
重力圏(質量^(1/2))>作用圏(質量^(2/5))>ヒル圏(質量^(1/3))
の順に第3の天体への影響力があるとのこと.
次は自身の引力で固まっている小天体がどの引力圏で崩壊するのか,
といった話に進むのかな?

天体と軌道の力学

天体と軌道の力学

待ち行列理論(4年ゼミ)

f:id:okiraku894:20170424112140j:plain
f:id:okiraku894:20170424120032j:plain
一人目,待ち行列理論.
前回,待ち行列の性能評価の話になり,諸量の具体的計算を今回は展開した.
待ち行列理論を適用する場面に合わせてどの量で評価すべきかは自ずと変わってくる.
後半はコストとも絡めた評価に.
なるほど現実に使われている理論だけあって,色々なことが具体的だ.
次回は客の母集団が有限である話へと変わっていくとのこと.

例題でわかる待ち行列理論入門

例題でわかる待ち行列理論入門

本日二人目を予定していたものの,手違いで面接練習に当人が行くこととなり,
トポロジカルインデックス,今回はおやすみ.

マッチングの数理,手品の数理(4年ゼミ)

f:id:okiraku894:20170421120927j:plain
f:id:okiraku894:20170421130149j:plain
一人目,マッチングの数理.
1対1安定マッチングについてさらなる分析.
初めに3:4のグループマッチングの例から観察を始め,そこから言えそうな事実を拾い上げる.
{(\text{男性優位アルゴリズム})\succeq_{\text{男性}}(\text{任意の安定マッチング})}
とか
・ある安定マッチングでお一人様になるのなら,任意の安定マッチングでもお一人様
とか.
で,後者は前者を認めるとすぐに出てくる.そこで前半,というところで時間切れ.
来週までにできてるのかな?

マーケットデザイン入門―オークションとマッチングの経済学

マーケットデザイン入門―オークションとマッチングの経済学

f:id:okiraku894:20170421153216j:plain
f:id:okiraku894:20170421162728j:plain
二人目,カードマジックの数理.
Gergonne系のトリックをとりあえず手がけることにして2週目.
何やら幾つかの場合を書き調べてきたようなのでその話を聞いた後,
いよいよ力学系への読み替えへ.
とはいっても本当に具体的に書いて見せられる話なので,よくよく納得してくれたようだ.
カード操作の別バージョンも調べてきたようだったので,
2種の操作の組合せでどの位置が不変になるのかその場で調べてみる.
さてさて,マジックとして成立しそうな良いルールは無いものだろうか?

トランプ数理マジック事典

トランプ数理マジック事典

音声工学,天体力学(4年ゼミ)

f:id:okiraku894:20170420134624j:plain
f:id:okiraku894:20170420140858j:plain
一人目,音声工学.音声工学という方向性をキチンと決めたのが先週.
とりあえず文献のないまま調べてきてもらった.
Cepstrum分析の話題となるのだが,やはりもととなる数式のないままの議論では
何とも心もとない.ということで最後にテキストを渡した.
さて,次回,どんな話になるのやら.

新音響・音声工学

新音響・音声工学

f:id:okiraku894:20170420152251j:plain
f:id:okiraku894:20170420153934j:plain
f:id:okiraku894:20170420162730j:plain
二人目,天体力学.
惑星リングをテーマにしたい,という方向で進めているが,
まずは天体の崩壊を起こす潮汐力について評価できるところまで持っていきたい.
次に安定的にリングが存在する軌道半径を求めていくわけだが,
制限三体問題やらヒル方程式やら必要になるらしく,
今後はその辺りの読み込みとなるだろう.
例えば地球にリングはできるだろうか?
といった疑問から「地球にリングを」なんて卒論タイトルが浮かぶわけだが,
さてさて.

天体と軌道の力学

天体と軌道の力学

トポロジカルインデックス,待ち行列理論(4年ゼミ)

f:id:okiraku894:20170417112331j:plain
f:id:okiraku894:20170417123152j:plain
f:id:okiraku894:20170417124501j:plain
一人目,トポロジカルインデックス.
今回は突然チェビシェフ多項式から始まる.
定義と種々の関係式,特にフィボナッチ等これまで登場した
三項間漸化式にまつわる数列がこれら多項式の特殊値で得られることまではOK.
最後に {cos n\theta} がチェビシェフ多項式で与えられる,というところで詰まる.
あれれ,かつてこの手の計算得意だったんだけどなぁ...

トポロジカル・インデックス: フィボナッチ数からピタゴラスの三角形までをつなぐ新しい数学

トポロジカル・インデックス: フィボナッチ数からピタゴラスの三角形までをつなぐ新しい数学

f:id:okiraku894:20170417141434j:plain
f:id:okiraku894:20170417145401j:plain
f:id:okiraku894:20170417145402j:plain
二人目,待ち行列.とりあえずはネタ探しと並行して読み進めることに.
サービスの性能評価をする際,指数分布の和の計算が必要になり,
ラプラス変換を通じて議論が進められた.
となると,今年度は待ち行列と音声工学両方でラプラス変換が登場するのかな.
ところで,彼は残像拳が使えるらしい.

例題でわかる待ち行列理論入門

例題でわかる待ち行列理論入門