ゼミの風景

おそらくお気楽はしのすけゼミの諸風景

Top | ゼミ2016卒 | ゼミ2015卒 | ゼミ2014卒 | イベント | About

3年ゼミ開始(3年ゼミ)

f:id:okiraku894:20181022133722j:plain
f:id:okiraku894:20181022140437j:plain
f:id:okiraku894:20181022141650j:plain
3年ゼミ初回.
とりあえず何も決まっていないゼミ生が多かったので,薄っすらでも方向がある人にお話をしてもらった.
数独,数理音楽,賭け事にまつわる数理.
その後,生物の体表の模様などの数理モデルとか免疫系の数理とかをとりあえず,というゼミ生が現れた.
ま,まずは次週.

「数独」を数学する -世界中を魅了するパズルの奥深い世界-

「数独」を数学する -世界中を魅了するパズルの奥深い世界-

理論・方法・分析から 調性音楽を読む本

理論・方法・分析から 調性音楽を読む本

音律と音階の科学―ドレミ…はどのようにして生まれたか (ブルーバックス)

音律と音階の科学―ドレミ…はどのようにして生まれたか (ブルーバックス)

波紋と螺旋とフィボナッチ

波紋と螺旋とフィボナッチ

「数」の数理生物学 (シリーズ 数理生物学要論 巻1)

「数」の数理生物学 (シリーズ 数理生物学要論 巻1)

「行動・進化」の数理生物学 (シリーズ 数理生物学要論 巻3) (シリーズ数理生物学要論)

「行動・進化」の数理生物学 (シリーズ 数理生物学要論 巻3) (シリーズ数理生物学要論)

リズム現象の世界 (非線形・非平衡現象の数理)

リズム現象の世界 (非線形・非平衡現象の数理)

幅跳びの数理,ダウトゲーム(4年ゼミ)

f:id:okiraku894:20181019113739j:plain
f:id:okiraku894:20181019122706j:plain
一人目,幅跳びの数理.
前回,ラグビーボールのバウンドのモデルを見ることとしていたので,その話.
初めにボール,つまり地面反力が必ず物体の重心を通るモデルについて運動方程式を立て,その後,必ずしも地面反力が物体の重心を通らないとしたラグビーボールモデルへ.
しかし,どうやら幅跳びの場合,うまく飛べるときというのは地面反力上に重心が乗ったまま跳躍できたときのようで,ではラグビーボールモデルで地面反力の作用線上に重心があるとした場合の解を見たら良いのでは,というところまできて次週へ.

スポーツバイオメカニクス20講

スポーツバイオメカニクス20講

スポーツ動作の科学―バイオメカニクスで読み解く

スポーツ動作の科学―バイオメカニクスで読み解く

f:id:okiraku894:20181019160519j:plain
二人目,ダウトゲーム.
必勝戦略探しの続きだが,前回から一見正しそうに思われる主張の証明をしてきてもらった.
が,よくよく観察すると色々と穴があって,そこか塞がらずにいる.
それに極端な例を考えると,実際に必勝とはならない事例が見つかって,あれれ,振り出しに戻った?
もう一度クリアーな頭になってから考え直そう.

遺伝的アルゴリズム(4年ゼミ)

f:id:okiraku894:20181015131329j:plain
随分また空いてしまった,遺伝的アルゴリズム.
蟻コロニーモデルの数学的根拠を証明しようとしてきているのだけど,本当にヒューリスティック以上のことが示せるのか心配になってきた.
となると,実際にシミュレーションをさせて,どこまでなら数学的に正しそうだと言えるか確認してから証明に進みたいものだ.
進みたいものだが,できるかなぁ...

遺伝アルゴリズムとニューラルネット―スケジューリングと組合せ最適化

遺伝アルゴリズムとニューラルネット―スケジューリングと組合せ最適化

進化論的計算手法 (知の科学)

進化論的計算手法 (知の科学)

幅跳びの数理(4年ゼミ)

f:id:okiraku894:20181012114719j:plain
幅跳びの数理.
前回,棒モデルで考えるという方針に変わって,それに関する運動方程式を見てきてもらった.
トランポリン上で棒が跳ねるというモデルだ.
しかし議論を進めるうちに,地面がそんなに弾むわけもなく,それよりも棒本体に伸縮の機能があると考えるほうが自然で,従ってどうやらボール,特にラグビーボールが近いように思われてきた.
ということでラグビーボールが地面でどう弾むかに関するモデルを見てきてもらうこととなった.

スポーツバイオメカニクス20講

スポーツバイオメカニクス20講

スポーツ動作の科学―バイオメカニクスで読み解く

スポーツ動作の科学―バイオメカニクスで読み解く

超越数論(4年ゼミ)

f:id:okiraku894:20181011135725j:plain
f:id:okiraku894:20181011145503j:plain
超越数.eの無理数度が2であることの証明.
eの連分数展開が"比較的おとなしい"ことを利用したこの証明はもっと広い範囲の無理数の無理数度が2であると主張していた.
後半,解析的評価にしばし手こずったけど,何とか証明が完成した.
ところでeそのものの連分数展開がなぜそうなるのかについてはまだだね.
次回に持ち越しかな.

無理数と超越数

無理数と超越数

人工知能(4年ゼミ)

f:id:okiraku894:20181010121839j:plain
人工知能.
前回よりクラスタリングそのものについての数学的仕組みを追う作業に入った.
というのも教師なし学習がどのように行われるのか見たいからだった.
とりあえず今日のところはその尻尾がつかめなかった.

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装

ニューロコンピューティングの数学的基礎

ニューロコンピューティングの数学的基礎

パターン認識と機械学習 上

パターン認識と機械学習 上

  • 作者: C.M.ビショップ,元田浩,栗田多喜夫,樋口知之,松本裕治,村田昇
  • 出版社/メーカー: 丸善出版
  • 発売日: 2012/04/05
  • メディア: 単行本(ソフトカバー)
  • 購入: 6人 クリック: 33回
  • この商品を含むブログ (20件) を見る
パターン認識と機械学習 下 (ベイズ理論による統計的予測)

パターン認識と機械学習 下 (ベイズ理論による統計的予測)

  • 作者: C.M.ビショップ,元田浩,栗田多喜夫,樋口知之,松本裕治,村田昇
  • 出版社/メーカー: 丸善出版
  • 発売日: 2012/02/29
  • メディア: 単行本
  • 購入: 6人 クリック: 14回
  • この商品を含むブログを見る

ダウトゲーム(4年ゼミ)

f:id:okiraku894:20181009160948j:plain
ダウトゲーム.
前回大雑把な証明方針を固めたところだが,本日再度元となる命題を検証.
よく見ると先手の場合だけ勝てる手筋があり,それを含めた形でカード枚数条件をはっきりさせた.
で,結局の所旋回まで着目していた半不変量がよく働くことがわかった.
さて,その後これをどこまで一般化できるかなんだが...

幅跳びの数理(4年ゼミ)

f:id:okiraku894:20181005122004j:plain
幅跳びの数理.ずっと斜方投射として幅跳びを扱う話をしてきたが,本日大きく次のすステップへ.
陸上をやっている当人の話を詳しく聞くと,どうやら剛体リンクモデルの登場ではなく,棒人間モデルで良いようだ.
それは例えば体操の跳馬のような味方で良いということだった.
さて,となると力学モデルが作りやすそうだ.
そしてヒトが実際に生成できる跳躍角度の限界というものがこれで計算できそうな気配だ.

スポーツバイオメカニクス20講

スポーツバイオメカニクス20講

スポーツ動作の科学―バイオメカニクスで読み解く

スポーツ動作の科学―バイオメカニクスで読み解く

ヘックスの数理(4年ゼミ)

f:id:okiraku894:20181004141105j:plain
ヘックス.今日は前回証明のあらましを考えたn\times(n+1) ヘックスの詰め.
ところが経路が交差することを示そうとしたら,Jordan曲線の問題に突き当たる.
もともと離散的なグラフの話だし,形は限定されているのだから初等的にできそうなのになかなか難しい.
すっかり固まってしまったので次回へ.

ヘックス入門―天才ナッシュが考えた数学的ボードゲーム

ヘックス入門―天才ナッシュが考えた数学的ボードゲーム

組合せゲーム理論入門 ?勝利の方程式?

組合せゲーム理論入門 ?勝利の方程式?

人工知能(4年ゼミ)

f:id:okiraku894:20181003115143j:plain
f:id:okiraku894:20181003125525j:plain
人工知能.種々の統計的判別の方法について見てきてもらう事となって,ようやく写真アリになった.
とっかかりとして,線形判別の話.
どこに超平面を引くと尤もらしいか,を数学的に定式化するということだ.
終いの頃,学習データとして(input,output)ペアが登場.
そもそもは教師なし学習をどう実現しているかを見たいから始めた話だったが,なんだかこうしてみると教師ありってのは教師なしの一部のように見えてきてしまって,どういうこと?となって今日は終わり.

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装

ニューロコンピューティングの数学的基礎

ニューロコンピューティングの数学的基礎

パターン認識と機械学習 上

パターン認識と機械学習 上

  • 作者: C.M.ビショップ,元田浩,栗田多喜夫,樋口知之,松本裕治,村田昇
  • 出版社/メーカー: 丸善出版
  • 発売日: 2012/04/05
  • メディア: 単行本(ソフトカバー)
  • 購入: 6人 クリック: 33回
  • この商品を含むブログ (20件) を見る
パターン認識と機械学習 下 (ベイズ理論による統計的予測)

パターン認識と機械学習 下 (ベイズ理論による統計的予測)

  • 作者: C.M.ビショップ,元田浩,栗田多喜夫,樋口知之,松本裕治,村田昇
  • 出版社/メーカー: 丸善出版
  • 発売日: 2012/02/29
  • メディア: 単行本
  • 購入: 6人 クリック: 14回
  • この商品を含むブログを見る

ダウトゲーム(4年ゼミ)

f:id:okiraku894:20181002123709j:plain
ダウトゲーム.
前回,一般化できそうな最初の結果を得たので,それを徐々に展開する.
今度は相手手札で2番めに大きなカードと自分の手札との比較で必勝型を探る.
うん,どうやら証明できたようだ.
さて,では3番めに大きなカードとすると...
これが形になると卒論としてはひとつオリジナルな結果が出せたことになる.
さてさて,どうなるかな.

超越数論(4年ゼミ)

f:id:okiraku894:20181001133606j:plain
f:id:okiraku894:20181001140522j:plain
f:id:okiraku894:20181001143751j:plain
超越数論.
前回リュービル数の定義とそのあたりにまつわる実数論の整理.
分類の切り口として無理数度を定義するが,多くのものは無理数度2らしい.
いずれにせよそろそろきちんと連分数を持ち出さねばならないので後半はその話.
次回はeの無理数度が2であることについて,かな.

無理数と超越数

無理数と超越数

人工知能(4年ゼミ)

一人目,人工知能.例によって写真は無し.
さて,今回も進展は無し.完全に方向性を見失った感じがある.
いわゆる機械学習理論そのものに関する知識不足によるところが大きい.
そこで研究室にある書物を手渡す.
教師なし学習の方法論を学ぶため,まずはクラスタリング周辺を見てきてもらうことに.

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装

ゼロから作るDeep Learning ―Pythonで学ぶディープラーニングの理論と実装

ニューロコンピューティングの数学的基礎

ニューロコンピューティングの数学的基礎

パターン認識と機械学習 上

パターン認識と機械学習 上

  • 作者: C.M.ビショップ,元田浩,栗田多喜夫,樋口知之,松本裕治,村田昇
  • 出版社/メーカー: 丸善出版
  • 発売日: 2012/04/05
  • メディア: 単行本(ソフトカバー)
  • 購入: 6人 クリック: 33回
  • この商品を含むブログ (20件) を見る
パターン認識と機械学習 下 (ベイズ理論による統計的予測)

パターン認識と機械学習 下 (ベイズ理論による統計的予測)

  • 作者: C.M.ビショップ,元田浩,栗田多喜夫,樋口知之,松本裕治,村田昇
  • 出版社/メーカー: 丸善出版
  • 発売日: 2012/02/29
  • メディア: 単行本
  • 購入: 6人 クリック: 14回
  • この商品を含むブログを見る

ヘックスの数理(4年ゼミ)

f:id:okiraku894:20180927122808j:plain
ヘックスゲーム.
前回話題にしたn\times (n+1)型での必勝法について.
すぐに証明できるだろうと高をくくっていたら,意外にもn\times (n+1)の特殊性を使った頂点の番号付けが必要なことがわかった.
大筋での証明はできたのだけど,これをちゃんとLaTeXに落とし込めるだろうか.
簡単そうに見えて,意外と面白かった問題だった.

ヘックス入門―天才ナッシュが考えた数学的ボードゲーム

ヘックス入門―天才ナッシュが考えた数学的ボードゲーム

組合せゲーム理論入門 ?勝利の方程式?

組合せゲーム理論入門 ?勝利の方程式?

ダウトゲーム,幅跳びの数理(4年ゼミ)

f:id:okiraku894:20180926123737j:plain
一人目,ダウトの数理.今日も必勝形が分かる場合探し.
現在考えているゲームではすべてのカードが場から消えないタイプで,こうなるとどうやら中々一般則が見つけにくいらしい.
というのも場からカードが減るタイプなら少ない枚数にはなしを還元でき帰納的な議論がしやすいが,消えないとなると個別対応になりそうな気配だからだ.
とりあえず,前回見つけた一般則をもう少しだけ広げてみよう,というところで次回へ.
進むのかなぁ...
f:id:okiraku894:20180926143523j:plain
二人目,幅跳びの数理.
前回ダイレクトに重心の高さと飛距離との関係を見てきてくれ,と宿題にしたが,本日改めて式を見てみると容易に単調増加性が分かった.
そして改めて見直してみると,要するに斜方投射なのだからそりゃそうなるんじゃない,という結果だった.
で,それでも理想に近い45度付近の跳躍ができるかというと,普通は水平速度が垂直速度より大きいのだからそんな跳躍はできそうにない.
そこでヒトの筋力を考慮した力学モデルを作ろうってことになる.
少なくとも垂直跳びの高さから跳躍エネルギーは求められるので,このあたりを参考に幅跳びにおける筋力を考慮した最適跳躍角度が出てきやしないだろうかね.

スポーツバイオメカニクス20講

スポーツバイオメカニクス20講

スポーツ動作の科学―バイオメカニクスで読み解く

スポーツ動作の科学―バイオメカニクスで読み解く